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PREFACE

This report incorporates t-: work done in a number of different efforts

to improve the Articulated Total Body (ATB) Model's capability to

simulate human body biomechanics in various dynamic environments,

especially aircraft ejection with windblast exposure.

The majority ot modluications to the model fall into six categories:

wind force cption

joint d6ift correction

edge etfect option

multi-axis angular displacement

vehicle motion prescription

slip joint option

hyperellipsoid option

These improvements havc been combined to form the ATB-IV version on the

Armbtrong Aerospace Medical Research Laboratory's (AAlRL) Concurrent

computer system at Wright Patterson Air Force Base. AARL, Systens

ResearLh Laboratories Inc.. J & J Technologies Inc., and the National

Highway Traffic Safety Administration have all contributed to the

technical work decrlbed herein.
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1.0 INTRODUCTION

The Articulated Total Body (ATB) Model is used at the Armstrong

Aerospace Medical Research Laboratory (AAMRL) for predicting gross human

body response in various dynamic environments, especially aircraft

ejection with windblast exposure. Aerodynamic force application and a

harness belt capability were added to the Crash Victim Simulation (CVS)

Program (Ref. 1), by Calspan Corpotation in 1975 for AMRL (Ref 2.), and

the resulting program became known as the ATB model. In 1980, Calspan

made a number of modifications to the ATB model combining it with the

then current 3-D Crash Victim Simulation program to form the ATB-II

model (Ref. 3). Complete documentation of the program through the

ATB-II version was performed by Calspan Corp. (Ref. 4). A new version,

ATB-III, was generated which included the improvements made by J & J

Technologies Inc to model the body response to windblast for AMRL (Ref.

5).

A number of additional efforts have been made to improve various aspects

of the ATB-III model, with emphasis on its capability to simulate

aircraft ejection with windblast exposure as well as complex automobile

accidents.

This volume, Modifications, contains a description of the major changes

made to create ATB-1V and the theory used to develop them.

Section Two ot this volume includes a new wind force option allowing

segment contact ellipsoids to block the wind as well as other

aerodynamic force improvements. Corrections to prevent angular drift in

the joints are described in Section Three. The edge effect option in

Section Four ensures that a contact of a plane with an ellipsoid will

not be ignored and that a smaller force will be applied when only part

of the contact area is withiu the plane boundaries. Section Five

contains an improvement allowing the prescription of multi-axis angular

displacements to describe the vehicle motion. A new option allowing a



joint to slice along an axis is explained in Section Six. Section Seven

ccntaias a new hyperellipsoid option. A summary of other modifications

that form the ATB-IV version is included in Section Eight.

These changes have been made so that previous input decks are valid with

changes required only in the H cards. The updated input description

outlining any changes needed and describing the use of the new options

is described in Volume 2, the User's Guide. Sample input decks using

the new options and the resulting output are also included in Volume 2,

along with an updated list of numbered stops. Volume 3, the

Programmer's Guide, contains the listing of the updated ATB-IV program.
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2.0 AERODYNAMIC FORCES

The aerodynamic routines added -o the model in 1975 (Ref. 2) have

some limitations which make simulating wind forces difficult. For

example the aerodynamic pressure is prescribed tabularly as a function

of time, but this requires knowing the velocity profile of the seat

before a simulation is made. Since the seat's motion may depend on the

wind forces, estimation or trial and error has to be used in defining

the aerodynamic pressure.

Also the aerodynamiL forces are applied to the entire projected

contact ellipsoid area that has penetrated the wind plane even if the

ellipsoid is partivily or fully blocked by another ellipsoid. This

causes a disproportionate amount of force to be applied in many cases.

This is especially significant for the torso segments where the

ellipsoids substantivally overlap. More than 30 percent of three torso

segment's combined Area is within another ellipsoid, resulting in the

aerodynamic fortce on these segments being much too large.

The original aerodynamic forces are applied to any segment by

specifying an aerodynamic pressure, a boundary plane, and a contact

ellipsoid associated with the segment. When the ellipsoid penetrates

the boundary plane, the wetted area is estimated and a pressure from the

tabular data, defining the time dependent aerodynamic pressure, is used

to calculate the force and torque that is applied to the segment.

Three changes have been made to the zoutines to allow more

flexibility in applying aerodynamic forces.

I. The aerodynamic pressure can be a function of a

segment's velocity.

2. A time dependent drag coefficient can be included in

calculating the wind force.

3



3. An additional method of calcularing the wetted area,

that allows segments to be defined which block the ellipsoid

from the wind, has been added as an option.

2.1. VELOCITY DEPENDENT PRESSURE

To allow for i velocity dependent aerodynamic pressure , subroutine

KLNPUT is altered! to read in E.6 cards that contain the specific heat

ratio, the speed of sound, and the absolute pressure for the altitude

which the simulation is to represent along with the definitions of two

segments. The aerodynamic pressure will depend on the velocity of the

first spgment with respect to the sezund segment.

The aerodynamic pressure, FT, used in WINDY to determine the aerodynamic

forces, is calculated from the definition ot dynamic pressure:

FT= (l/2)kPa (W/c)
2

where k is thc ratiu of specific heats

c is the speed of sound

Pa is the absolute pressure

V is the velocity of the first segment with respect

to the reference segment

Note that FT is a pressure and is multiplied by a wetted area in

subroutine WINDY to determine the wind force applied to a segment. FT

can be defined as time dependent using the same input cards as before,

or as vel-city dependent by .pecifying a specific heat ratio. How F is

applied to a segment in subroutine WINDY, has no functional dependence

on the methu used to define FT.

4



2.2 DRAG COEFFICIENT

Time dependent drag coefficient functions can be defined as wind force

functions on the E.6 cards. They follow the same format as the time

dependent wind force functions, although the drag coefficient is a

scalar quantity rather than a vector. Before the aerodynamic pressure

is used in WINDY, it is multiplied by the drag coefficient, CD.

FTnew = CD F-T

This can be used to simulate the effects of the drogue chute opening or

other events that effect the drag. If there is no drag coefficient

defined, the default value is 1.0.

2.3 hLOCKED WIND

To allow for blocking of the wind, a t econd method of applying the wind

force has been added to subroutine WINDY. This involves projecting the

ellipsoid, to which the aerodynamic force is being applied, as an

ellipse to define the wetted area. Then this ellipse is divided into

incremental areas, whose center points are checked for penetration of

the wind plane and for blockage by other segments. Each area that

passes these tests has the wind force applied at its center point. This

allows for overlapping and connected segments. Since this new grid

method can increase run time significantly, the original wethed can

still be used for any or all of the segments to which a wind force is

being applied, without any changes to previous input decks.

Subroutine WINDY contains the major changes that incorporate this

new method for applying the aerodynamic forces. Much of the analysis

needed for this method is based on the derivations developed for the

VIEW program (Ref. 6). In WINDY, after checking if there is any

penetration of the segment through the wind plane, and getting the wind

pressure from the wind force functions, the program chooses a method for



the wind force calculations depending on the input. The original method

uses a calculated area of the ellipsoid, while the new method allows for

blocking of the wind by other segments, by using a grid to determinp the

area.

2.3. -j~p t Ellipsoid

For the grid method, the first step is to set up a coordinate

system associated with the wind. This viewpoint coordinate system is

located at an assumed origin of the wind with it's z-axis directed

towards the origin of the inertial coordinate system.

Define,

FT as the wind force vector (inertial coord.)

VP as the or'gi of the viewoint coordinate system

(inertial coord.), which is set equal to -10000FT.

DVP as the direction cosine matrix tor transformation of

vector components from the inertial to the viewpoint coordinate

system.

The DVP transformation is chosen such that the X-axis of the viewpoint

coordinate system is parallel to the X-Y plane of the inertial

coordinate system. DVi can be calculated as follows:

Let

ft = Fl! - , which is the unit wind force vector

form

XNORM = ./ft,2 + ft2
2 , which is the projected length of t

on the X-Y plane.

6



Let

A
vp - ft

then it can be shown that

Xvp = (ft21 - ftJ)/XNORM, is a unit vector normal to

Zvp and parallel to the X-Y plane of the inertial

coordinate system.

The third unit vector can then be obtained using the vector product

Y P = Zvp x Xvp

The transformation matrix is then formed by placing these unit vectors

in row form

ft2/XNORM -ftl/XNORM 0

DVP ft ft3/XNORM ft2ft3/XNORM -XNORM

ft I  ft2  ft3

The contact ellipsoid is projected onto a plane parallel to the X-Y

plane of the viewpoint coordinate system. Since the viewpoint is far

away from the ellipsoid and the Z-axis is nearly directed at the

ellipsoid, the projection is assumed to be elliptical. To solve for an

ellipse matrix, three radial vectors of the ellipsoid, pointing to a

surface point that forms the contour of the projected shadow, must be

determined. BD(7-15,M) is the matrix that defines the surface points of

ellipsoid M with respect to its principal axes. First, this ellipsoid

matrix, BD(7-15,M), is transformed to the viewpoint coordinate system

and designated as AM(3,3). This is accomplished by:

AM = DVP DT BD D DVPT

where D is the direction cosine matrix that transforms

from the inertial to the ellipsoid principal coordinate system.

7



In order to define the projected ellipse, three vectors are chosen which

lie respectively in the X-Z plane, the Y-Z plane, and the (X=Y)-Z plane

of a coordinate system parallel to the viewpoint system but with its

origin at the ellipsoid center. These vectors are shown in Fig. i, and

have components

RIX \R3X
S1RZ) R2 (R2y) R3= .R3y)

with R3X = R3y

As seen in Fig. 1 the associated vector PI from the viewpoint to the tip

of R1 is normal to the normal vector i 1 for the point defined by RI on

the ellipsoid. Therefore,

0 ~ and Hl -AM1RI 1) &2)

Combining equations I and 2,

AM Ri Pl = Pi " AM Ri - 0 3)

Also from the figure,

PI=SM + 4

Substituting in eq. 3 for 7 1 from eq. 4,

(gMj + RI)T AM R1 _ 0 = rMT AM RI + IT, AM R1  5)

RTI AM R1 = 1 from the definition of an ellipsoid. 6)

then,

AM RI = -17

8
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Subroutine SOLVR solves this equation for the components of R1 . The

same procedure is used to solve for the other components of 12 and R3 "

To solve for R1 , R2 , and R3, we will respectively treat these as Case

No. 1, Case No. 2, and Case No. 3.

For all three cases expanding eq. 7

A11 AM12 AM3

(SMx, SMy, SMz ) AM21 AM22 AM23 R - -1

AM31 AM32 AM33

or

(SMXAMI1 + SMyAM2 1 + SMZAM31, SMxAMI2 + SMyAM2 2 + SMZAM32,

SMxAM1 3 + SMyAM23 + SMZAM3 3 ) R = -l

This can be further reduced to

(AlSMX + A2SMy + A3SMZ) RXorY + (A4SMX + A5SMy + A6SMZ ) RZ = -1

where

Case No. 1 Case No. 2 a No. 3

Al = AM 1 Al - AM1 2 Al = AM11 + AM12

A2 - AM21  A2 = AM2 2  A2 - AM2 1 + AM2 2

A3 = AM31 A3 - AM32 A3 - AM31 + AM32

10



A4 = AM13

A5 = AM23 for all cases

A6 = AM3 3

Makiv6 the further substitutions;

B = AISMX + A2SMy + A3SKL

D = A4SMX + A5SMy + A6SHz

we get

B RXorY + D RZ = -I.

Solving for RXorY

RXorY = -(DIB)R Z  -(I/B). (8)

Now the R vectors can be written

'= K o/)z 1B

= t' (D/B)R z -I/B
RZ

RZ

It L

F (D/B)RZ -1/B1
i!3 -H-D/B)RZ -l/B

L J



Substituting R into eq. 6 and expanding,

A7 RXorY 2 + 2 A8 RXorY RZ + A6 RZ
2  1 (9)

where

gseNo. 1 Case No. 2 Case No. 3

A6 = AM33  A6 - AM3 3  A6 =AM3 3

A7 = AMII A7 = AM 2 2  A7 = AMII + 2AM1 2 + AM 2 2

A8 = AM13  A8 = AM2 3  A8 = AM13 + AM23

Substituting eq. 8 into eq. 9,

A7[-(D/B)RZ - I/BJ
2 + 2A8RZ[-(D/B)RZ-1/BJ + A6Rz

2 = I

Expanding and combining like terms,

[A7(D/B) 2 +A6-2A8(D/BIRZ2 + [2A7(D/B 2 )-2A8(1/B)IRZ + A7/B
2-1 = 0

Therefore,

RZ = -T2 + T2 2 - 4T1T3 and RXorY -(D/B)RZ - I/B

2TI

where

TI = A7(D/B) 2 + A6 -2A8(D/B)

T2 = 2A7(D/B2 ) - 2A8(l/B)

T3 = A7(1/B 2 ) - 1.

12



WINDY calls subroutine SOLVR which requires as input variables the

values of Al, A2, A3, A4, A5, A6, A7, A8, and SM for each case.

Subroutine SOLVR returns corresponding values for RXorY and RZ. The

three R vectors obtained satisfy the three dimensional ellipsoid, and

lie in the appropriate planes.

These R vectors are then projected as if the viewpoint was an

infinite distance away. Therefore, the X and Y components of R are the

two-dimensional projected vectors, R2.

R2X = RX R2y - Ry

The equation for the ellipse is,

[AS1 1 Al 2

R_2T AS 2 I where AS

AS 2 1  AS22J

Since there ate three R2 vectors and three independent components of AS,

AS can be obtained by solving three equations simultaneously which is

done in subroutine SOLVA.

2.3.2 Set-up Grid Pattern

To set up the grin pattern for the ellipse, the majct and minor

axis vectors are needed. These vectors are found by solving for the

eigenvalues of the ellipse matrix, AS, by imposing the condition

AS R R

This condition is true only for vectors that represent the major and

minor axes of tte ellipse.

rASj1  AS12" RX] L X

As12 AS22  Ry A R.

13



Or,

ASII- AS 1 2

-O0 (10)

ASI 2 AS2 2-

Theref or.,

= ASII + AS 2 2 ±v(AsII + AS 2 2 )
2 

- 4 (ASI AS 2 2 -A 1 2 2)1/
2

2

With the tigen vectors,

I V2 AS 2 RX

I -AS, Ry

2 AS1 y Ry

These are the major and minor axes vectors of the ellipse.

2.3.3 Three Checks

With the major and minor axes of the ellipse found, a grid is laid

over the projected ellipse (Fig. 2) and each corner point of the grid is

checked to see if it is in the ellipse, through the wind plane or not

behind a blocking segment. It all are true, then a wind force is

applied to the incremental area (AREA) shown shaded in Fig. 2.

14



VPP

qiCorner Axisit

Major Axis

1 igure 2 Grid Overlay

2.3.3.1-Ciaeck if Cner P in I kitin oiected Ellipse. RE is the

two dimensional vector to a corner point. It WT &S R. 1, then a i

within the ellipse.

Elii 2-D i

Projec scud

Figure 3 Three Dimensional tocatioti of P



For the next two checks, the three dimensional location oi R on

the ellipsoid is needed. See Fig. 3. The Z component of the btree

dimensional vector, A, is found by solving the ellipsoid equation,

SAM11 AM12 AM13" "FAX7

(RMX, RMy, BMZ) AM12 AM22  A123 RMY - 1

LAM13 AM23 A33 RMZ

Expanding and solving for RMz

-TM2 1 VTM22 -4TM1  TM3
2TM1

where

TM1 a AM3 3

TM2 - 2 (RMx AM13 + RMY AM23)

TM3 - RMx2 AM1 1 + RMy 2 AM2 2 + 2RMX RMY AM12 -1

and UN1 is the vector from the viewpoint to RM ou the ellipsoid's

surface and is given by

HI- S- +1

with all vectors expressed in the viewpoint coordinate system.

2.3. 2.Check f Is Penet~ra#ing Wind Plan~e From Fig. 4 define

APL - normal unit vector to wind plane (in the segent coordinates

to which plane is attached)

16



PL4 - nearest distance from plane segment origin to plane

- vector from plane segment origin to tip of R (in the

segment to which plane is attached)

BTS - component of X along PL

- A

BTS = XMM • PL

If BTS > FL4 then R is penetrating wind plane.

x

t

-'------ Wind Plane

Figuru 4 I'll ip:,il/P'in l, 'hi rat i)

17



2.3.3.3 ChiegKthat RR Is-Not B locked___,I Arpy Of _The- Blocking Segmuents.

First, the ellipsoid matrices for the segments that may be blocking the

wind must be transformed to the viewpoint coordiuate system. This is

done using

AI = DVp i D T BDi D, DVPiT

Also Si is defined as the location of the i-th blocking segment in the

viewpoint coordinate system (Fig. 5).

Blocking Sc e r n.tw

(X, Y)r(o , ipdth n)

SI

/M VP

Lin ti

low- Sight

Figure? 5 Chucrk Foir Blticktid W' id

A line cl' sight is defined as a liLr' aionnal to the viewpoint X-Y

plane through the tip of M, and is used to determine it the wind hits

the blocking segment before reaching VI (Fig. 5). The two-dimensional

vector, (Y, Y), from the center of the blocking ellipsoid to the line of

sight is used in defining the point where the line of sight enters the

blocking ellipsoid.

18



X = SNI X - SIX

Y = SNy - Sly

The Z component of the entry point, BI, is calculated in the same manner

as RMZ earlier,

All1  A 112  A11 3  X

(X, Y, BI) Al1 2  A122  A12 3  Y = (12)

Al1 3  A13 2  A13 3  BI1

It the line of sight does not pass through the blocking segment, BI in

equation 12 is a complex number. The entry point could be beyond R,

therefore, the distances from the X-Y plane of the viewpoint coordinate

system are compared. If SNIZ , SIZ + BI, then RR is not blocked.

Each of the possible blocking segments are checked using this

method. If each of tnese checks are true, then a wind force is applied

to the incremental area at RN. Each corner point is handled the same

way and the forces are totaled and added to the Ul and U2 arrays.

2.4. CHANGES TO THE PROGRAM

A new H card is now needed for the wind forces to be output as

tabular time hi~toroc The wind force applied to any segment can be

output to the tabular time histories in any reference system.

This addition requires changing common block RSAVE to:

COMMON/RSAVE/ XSG(3,20,3), DPMI(3,3,30), LPMI(30), NSG(9),

MSG(20,9), MCG, MCGIN(25,5), KREF(9)

The size of NSG, MSG, and KREF are increased to allow for the

additional set of tabular time histories.

19



Besides RSAVE, the other changes require common block WINDER to be

modifieG to:

COMMON/WINDFR/WTIME(30),QFU(3,5),QFV(3, 5),WF(3,30), IWIND(30),

MIWSEG(7,30),NFVSEG(b),NFVNT(5),MOWSEG(30,30)

The size of MWSEG is increased to include the drag coefficient

function number and the number of possible blocking segments.

New variables that are added to the COMMON block are:

WF(3, 30) Wind force vectors applied to segments

(in local reference),

MOWSEG(30, 30)

MOWSEG(21-1, J) Segment identification number of I--h

segment that can block segment J,

MOWSEG(21, J) Contact ellipsoid associated with the

MOWSEG (21-1,J) segment.

In addition to the common block changes, coding changes affected a

number of subroutines. Subroutines WINDY and KINPUT contain the

majority of these changes and SOLVA and SOLVR are new subroutines. In

Volume 3 of this report, the listing of the ATB-IV code has the labels,

WINDOP or WINDROT, in column 73, of all the new or changed lines needed

for these wind force options.

To use the velocity dependent pressure, drag coefficient, or blocked

wind the input deck has to be modified. The input description for

ATB-IV is in Volume 2 of this report and describes these modifications.

Note: Previous ATB or CVS input decks require a blank card to be

inserted for H.8.
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3.0 ANGULAR DRIFT CORRECTION

The locked axes of the joints in the ATB Model often drift from their

original position because of inherent inaccuracies due to the numerical

integration process. The CHAIN subroutine was written to correct for

these errors after each integration step, but the drift of the locked

axes still occurred, especially during long simulations. The code

modifications described here correct this drift and the sudden shifts in

the joint azimuth angles.

3.1 TECHNICAL DISCUSSION

The ATB Model has four types of joints, they are:

1) Ball and Socket Joint,

2) Pin or Hinge Joint,

3) Euler Joint, and

4) Null Joint.

The Ball and Socket Joint and the Pin Joint may be locked. The

Model will unlock these joints when a specified torque is exceeded. The

Euler Joint has three axes which may be locked or unlocked independently

thus providing eight states for the joint. The Null Joint is used to

provide the option of disjoining sets of segments.

In the AIB Model constraints are iaposed on the joints by computing

a constraining torque. The basic equations are:

11 I + DI l = other torques (13a)

.12 i/2 - .2 .q other torques (13b)

where 11 , 12 are inertia matrices of the adjoining

segments,

w I , w2  are the angular accelerations,
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are direction cosine matrices,

is a projection matrix which depends on

the type of constraint, and

is the constraint torque.

The constraint equation (which is needed to so>ve for i) can be beat

derived by considering the case of a Pin Joint. In this joint the

constraint is that the pin vec:r in one segment must coincide with the

pin vector in the adjoining segment. The pin vector defines the free

axis of the join* (the Pin Joint has only one free axis). The equation

is:

01 Ehl = T Z 2  = h (14)

where , are the pin vectors (1x3 matrices)

in the respective segments. These

vectors are constant in the

segments.

is the instantaneous pin vector in

inertial reference,

and

2T1 ,0 2  are the transposes (inverses) of the

direction cosine matrices.

Differentiating equation (14) yields an equation in the velocities Wl

and (2 thus:
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Differentiating equation (15) yields an equation in the acceleration,

thus:

DTI ( 1 x El) + ('1 x (71 x hl))

(16)

..2T2 (' x E2) + (f2 x092 x K2 ))

Equation (16) is the desired constraint equation for the accelerations,

however it is only of rank 2 and we need an equation of rank 3 to solve

for the torque. This is obtained by observing that the constraint

torque can have no component on the pin axis, i.e.

;T4 = 0 (17)

Equations (16) and (17) can be combined into a single matrix equation of

rank 3 by crossing equation (16) with h and adding the term hhTq. The

resulting equation can be put in the form:

QT I  'I - £ T 2 w2 + U - V4

(18)
- jT2 2 QT2 (h2 x 2) - hT1 W, T1 (El x 1 )

The projection matrix X is given by

P = I - h Et where i is the identity matrix.

Equations (13) and equation (18) are the basic equationsused in the

ATB Model to form the system equations which are solved for the

constraint forces and torques and for the linear and angular

accelerations.

Details on the form of equation (18) for a locked joint and for an

Euler Joint are given in Volume I of Reference (4). The only

differences are the form of the projection matrix P and the right hand
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side of equation (18). In particular for a locked joint P is the

identity matrix and the right hand side of equation (18) is the zero

vector (x3 matrix).

3.2 CORRECTION OF THE DRIFT PROBLEM

Tbr- obe _ with d.iZt arises since the constraints are imposed on

the acceleration (equation (18)) and the values of angular velocity

(V's) and angular position (a's) are obtained by numerical integration.

Errors can arise because of errors in the solution of the system

equations and errors due to the numerical integration process. Errors

of this nature are unavoidable because of the finite precision

calculation on a digital computer. Thus we may find that equation (14)

and equation (15) are not satisfied to some desired degree of precision

at some point in the solution process. To correct this, Subroutine

CHAIN was modified.

Consider the following equations;

Let 9 = h2 x (42 ?T1 h1), a vector (lx3 matrix).

If the vector U is zero then h 2 and hl are aligned. If U ib not

zero it is perpendicular to the pin vectors El and E 2 and has a

magnitude which is the sine of the angle between the pin vectors. This

vector is used to define the rotation operator that is applied to

segment 2's direction cosine matrix aligning the bl and b2 vectors;

D2" = [ cl + liT /(l + c) - (U x)ID 2  (19)

where c is the cosine of the angle between the pin vectors,

and (U x) is the matrix analogous to a vector cross product

operation.
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The velocity vector is also modified;

V2" = D2* 12T V1 + h2 (ET2 g2 - h T
1 V1) (20)

Subroutine CHAIN (at the option of the user) modifies the direction

cosine matrices P and the angular velocities W as specified in equations

(19) and (20). This insures that the iigular position constraint

(equation (14)) and the angular velocity constraint (equation 15) are

satisfied for pin joints.

3.3 CORRECTIONS TO THE PROBLEM

The ATB model was studied in detail to determine why the above

procedure was not functioning properly. Two errors were found, they

are:

1. The right hand side of equation (12), which is

computed by Subroutine SETUPi, was being computed

before the direction cosine matrices were modified.

2. Incorrect h vectors were used in Subroutine CHAIN

for an Euler Joint in states 4, 5, or 6.

Error I was corrected by calling Subroutine CHAIN before calling

Subroutine SETUPI in Subroutine DAUX, and error 2 was corrected by

correctly defining the h vectors. Also the code to correct for drift

was removed from subroutine CHAIN and put into a new subroutine called

DRIFT. This required that the dimensions of the HIR array and the CONST

array, which are in COMMON/CEULER/, be changed. The new arrays are

HIR(3,3,90) and CONST(5,30). This change was made in all the routines

that included this COMMON.

Subroutines EJOINT, INITIAL, and UPDATE were modified to store the

variables needed for the new drift routine.
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Listings of the new DRIFT subroutines and of the changed

subroutines are in Volume 3 of this report. New or changed lines are

labeled with JDRIFT starting in column 73.
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4.0 EDGE EFFECT OPTION

In the past, problems often developed in ATB simulations when an

ellipsoid came in contact with a plane near the plane's edge. If part

of the ellipsoid contacted the plane edge but the center, of the

cross-sectional ellipse, containing the area cut by the plane, did not

lie within the plane boundaries, then no force was applied as if no

contact had occurred at all. However, as soon as this center moved

within the boundaries of the plane, a full contact force was applied.

The planes had to be adjusted and modified frequently to avoid

instantaneous jumps in force when contact occurred at object corners.

These new routines have been developed to solve this edge effect

problem. In particular, use oi the new edge effect option insures that

a contact of a plane with an ellipsoid will not be ignored and that a

smaller force will be applied when only part of the contact area is

within the plane boundaries. Also an option was added allowing a force

to be applied when the ellipsoid has completely penetrated the plane, if

the edge effect option is not used. Another alternative for improving

contact force calculations is to use a hyperellipsoid to describe the

surface. This option is described in Section Seven.

4.1 NEW SUBROUTINES

4.1.1 Subroutine PLELP

Subroutine PLELP computes the point of maximum penetration of an

ellipsoid associated with segment m intersecting a plane associated with

segment n. Previously the point of maximum penetration was projected

onto the plane. If this projection tell outside of the boundaries of

the plane, the contact was ignored. A five way option has been added to

the routine. The choice is made by the uder by inputting an additional

integer on the F.I.B - F.I.N cards. This integer is stored in the

twenty third location of the TAB array associated with the contact. The

options are:
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TAB(NT+22) 0, call new edge effect routine PLEDG, no

force is computed for complete penetration,

0, use standard finite plane test, no force is

computed for complete penetration,

= -I, treat plane as infinite (bypass

edge test), no force is computed tor complete

penetration.

= -2, treat plane as infinite (bypass edge test), a

force is (omputed for complete penetration,

-2, use standard finite plane test, a force is

computed for complete penetration.

Equations usen in PLELP.

Let: (Fig. 61'

Z location of the reference point of segment m,

(inertial system)

Zn lt, cation of the refcrence point or segment n,

.ne-;tial Sy bt,-M)

Ulu offset of Lne ellipsoid, (inertial systEm)

P first reference point for the plane, (inertial

system)

T unit exterior normal of tie plane,

L ellipsoid matrix.

Then the equations are;

Xnc = Zm + Om - Zn - PI , vector from PI to center of

ellipsoid.
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Rin = R+ 0, + Z, - Z,, location of the point of

maximum penetration

relative to the reference

point of segment n.

4.1.2 Subroutine PLEDG

If the ellipsoid intersects the plane, the figure of intersection

will be an ellipse. Subroutine PLEDG is used to determine if this

ellipse has any common area with the finite plane.

Z aU + bV is a point in the plane where

U, V are the vectors defining the boundary of the

finite plane, and (U = P2 V F3 - -1,

where P1, P2, P3 are the vectors defining the plane),

and

a, b are scalars. Let

= (bet/bte)Rm, be the vector from the center of the

ellipsoid to the center of the cross-

s:'ctional ellipse.

dl, d2 is location of the center of the ellipse from

thL reference point P1 in U, V coordinates.

Then, the equation of the ellipse is

(Z - W)T E (Z _ W) I.

This may be written as

a2ell + 2abel 2 + b2 e2 2  p p 2, whre (21)

ell = lgT7, 1 2 = T, e2 2 = VTC, and p 2 = I-
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Computation of the intersection of the ellipse and the finite plane (a

parallelogram) is performed as follows:

Def ine

aujin = max(aal, -dl), and

amax = min(aa2, I - dl).

If amin is greater or equal to amax, the ellipse has no common area

with the finite plane. (it lies entirely to the right of the finite

plane or entirely to the left.)

Define

hmi n  max(bbl, d2 ), and

bmax min(bb2, I d2)"

it bmi n is greater cr equal to bmax, the ellipse has no common area

with the finite plane. (it lies entirely above the finite plane or

entir ely be I ow.;

it t,,in is greater than bbl, the lower boundary of the plane

intersects the ellipse. The corresponding values of a may be calculated

from the ellipse equation 21 as

afo n  -bi1nel2/ell sqrtL 2/ell- delt(bminlell) 2]

afpn =-mine12/ell + sqrt[ 2/ell- delt(bain/ell ) 2]

Similarity it ba x is less than bb2, the corresponding values

ot a are
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Section

1 left upper arc of ellipse:

initially am, = a2 -amin, then

if bma x > bal, Sm2 = min(afmx, amax)

if bma x - bal, and hmi n > bal,

aml = max(afln, amin)

II upper straight line boundary:

afp = min(afpx , amax)

afm = max(afmx, amin)

ill right upper arc ot ellipse:

initially axl = a2 = amax, then

it bmax > ba2, axl = max (afpx amin)

if bmax ba2, and bmin > ha2,

ax2 = min (afp n , amax)

I' left lower arc of ellipse:

initially bml = hi2 = amin , then

if bmi n " bal, bm2 min (afmn, amax)

if bmi n  b.1 , and bmax < bal,

bml = max(afmx, sain)

*3')



II' lower straight line boandary:

bf = min(afp n , amax)

Ill' right lower irc of ellipse:

h initialty bx = bx2 amax, then

it hmin- ba2, bx! max(afpn, amin)

Smin ba2, aad bma x  ha2,

bx2 min(a-px, ama x )

WiLi the above logic, i- the lower abscissa of any section is

greater than or equal to the upper limit the section does not ex i st. If

ne section ut the upper boacdary exists then the-re is no cor-Mon area and

che routine exits.

It it is determinea that a c,.mmon area exists, subroutine PLREA is

called to compute the centroid of the common area.

Next, the vector from the center of the ellipsoiu to the centroid

of the common area is computed as

Rmt= acUbCV + ' where

ac, bc are the abscissa and the ordinate of the

centroid and

W is the vector from the certer of the

ellipsoid to the center of the ellipse
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Finally, the penetration parameter, p, is computed as the point on

the ellipsoid below the centroid. This is done by using the equation of

the ellipsoid

- pT)(R- = 1, where is the normal to the

plane.

This equation is a quadratic in the parameter p and may be readily

solved with the quadratic formula. The penetration parameter p is the

positive solution of this quadratic equation.

4.1.3 Subroutine PLREA

This routine computes the common area and its centroid. Since the

equation of the ellipse (equation 21) is a quadratic the integration can

be done in closed form. The abscissa is used as the independent

variable. For a given value of the abscissa, a, the ordinate, b, is

computed from equation 21 as

h = -ae1 2/e2 2 + sqrt[r/e22 - d(a/e 2 2 )
2], where (22)

r = v2 and d = delt, are already computed by PLEDG.

The area is computed by adding the area contributed by each ellipse

or straight line section. For the ellipse sections incremental areas

are obtained by integrating equation 22 for each arc:

fbda = h2 [t + sin(t) cos(t) - f sin 2 (t)/g]/(2g)

For the straight line portions the incremental area is ab.

The abscissa of the centroid is determined by summing the

contributions from each section and then dividing by the total area.

For the ellipse sections the contributions are determined by integrating

equation 22 times a:

f bada = h3 [-cos 3 (t) - fsin 3 (t)/gI/(3g 2 )
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For the straight line portions t.ie Lontribution is ba2/2.

Similarly the ordinate- of the centroid is determined by simming the

contributions fromt tach section and civiainv by the area. The ellipse

contributions are equal t: one Lialf the integral of the square of

equation 22:

1/2 b 2 da = h3 [2tcos(t.) Jgsin~t) + (t2 - g 2 ) sin 3 (t)/g]/(6g 2 ),

and the str2aghc. line contributions are ab2 i'2.

Whe;c sin(L) ag/ n,

g Lc jrt. J)i/ 22, a

h =sqrtrin 2 2 ).

The routine combines bebe contributions t,- compute the centroid

and the area. The true area 1o thE area xinputed by thi s routine times

the magnitude of thc cos,, product of the U an! V vectors. The true

area it not computed since i, is not currently used.

4.2 MUDIFICATION Ok UTh'Z'k JUfINES

In the aevelopment of the edge effect routine it was convenient to

have the vectors U and V, wlich are the sides of the parallelogram of

the finite plane, available. hlence the aimension of the plane array in

COMMCN/CNTSRF/ was changed from 17 to 24. This change was made in all

routines that included this COMMON. The new format of the plane array

is given in the table below.
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Table I

Format of PL Array

subscript Description

1, 2, and 3 unit exterior normal, T, to plane,

4

5, 6, and 7 P1
A

8, 9, and 10 Up, unit vector perpendicular to side

3 - F1

11 Upp-

12 pT( (- )

13, 14, and 15 Vp, unit vector perpendicular to side

P-2 - P-1
A

16 VpTpI

17 DT(- -)

18, 19, and 20 F2- P!, vector

21, 22, and 23 P3 - P1, V vector

24 not currently used

P1, P2 and P3 are the points defining the plane.

Subroutine ROTATE was modified to rotate the proper components of

the new PL array.

Subroutine FINPUT was modified to allow the input of the parameter

used to select the edge effect option in subroutine PLELP.

Subroutine EQUILB was modified to use the new PLELP instead of

using a shortened version of the subroutine.

In making changes to PLELP, a number of improvements were developed

to sections of code that are in both PLELP and SEGSEG. Therefore,

SEGSEG was changed to incorporate these improvements.
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Listings of th- changed subrout'ats and new PLEDG and PLREA are in

Vol1me 3. New or cl.anged lines have EDGE in column 73.

To us Zhis new optI'on changes -o the 1' i cards are required. The

changes are dEscribed in the input description in Volume 2.
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5.0 MULTI-AXIS ANGULAR VEHICLE DISPLACEMENT

ATB-II and subsequent versions of the ATB Model allow the user to input

a specified motion for predesignated segments. Thus input may be in the

form of positions, velocities or accelerations. However, position

information for angular orientation may be specified only for one axis,

i.e. yaw, pitch or roll. In order to remove this restriction it was

necessary to develop a technique that will allow general angular

orientation data to be used.

5.1 MATHEMATICAL DEVELOPMENT

Given the yaw, pitch and roll angles of a body at specified points in

time:

Let TM(n) be the time at point n, where n = 1, N

(these time points need not be equally spaced),

Al(n,l) be the yaw angle at point n,

A1(n,2) be the pitch angle at point n,

Al(n,3) be the roll angle at point n, and

N number of data sets.

The angular velocity V may be calculated from the quaternion product

V= 2 q* 4 (23)

and the angular acceleration from,

X = 2q* 4D (24)

where V is a column matrix (3x1) with components V(i), i = 1,3

is a column matrix (3xl) with components A(i), i - 1,3

q is the quaternion representing the angular orientation,

q is the conjugate of the quaternion q,

is the time derivative of the quaternion q, and

is the second time derivative of the quaternion q.
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The quaternion q may be represented as a column matrix with

components q(i), i = 1,4. It is convenient to consider the first

component q(l) as a scalar and the other three as a vector, i.e. a 3xl

matrix hence let

c = q(l)

U = a 3xl matrix with components q(i), i = 2,4 and let

e = 4(1)

v = a 3xl matrix with components 4(i), i = 2,4

v a 3xl matrix with components (i), i = 2,4

The quaternion q may be determined from th2 direction cosine matrix

representing the angular orientstion of the body. The direction cosine

matrix is obtained from the yaw, pitch and roll angles.

D= (c 2 - iaTU)j + 2 U ;T -2c (G x)

where D i the direction cosine matrix (3x3),

UT is the transpose of the matrix G,

(U x) is the matrix representing the cross product operation

and,

I is the identity matrix.

From the above equation one has

S = 4 c ( U x) and

trace() = 3 c2 - CITU = 4 c2 - I since c2 + uIh I.

Therefore Q(l) = c = 0.5 SQRT(D(l,l) + D(2,2) + D(3,3) + 1),

Q(2) = u(l) = (D(2,3) - D(3,2))/(4 c),

Q(3) = u(2) = (D(3,1) - D(1,3))/(4 c),

Q( 4 ) = u(3) = (D(1,2) - D(2,1))/(4 c).
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It should be noted that the magnitude of the u(i) may be computed from

the formula u(i) = SQRT((D(i,i) + I - c2)/2). This may be used in the

special cases where c = 0. The signs of the u(i) may be resolved by

examining the signs of the off diagonal terms of DT + D.

Assuming that these angles are continuous in time, c and U can be fitted

with the Spline Routine that is already part of the ATB Model. The

Spline Subroutine produces a set of functions SP(i,j,k) for a cubic

spline which preserves the given values of the quaternion:

SP(ljk) TM(j) j = 1,N, k = 1,4

SP(2,jk) q(j,k) j = 1,N, k = 1,4

SP(3,jk) ql(j,k) j = 1,N, k = 1,4

SP(4,jk) q2(j,k) j = l,N, k = 1,4

SP(5,jk) q3(j,k) j = 1,N, k = 1,4

where ql, q2 and q 3 are the linear, quadratic and cubic terms determined

by the spline routine. These were determined such that the first and

second derivatives of the piecewise cubics are continuous at the

specified time points and the sum of the squares of the changes in the

third derivative at these points is minimized.

Using these spline functions as interpolating functions, values of the

quaternion terms may be determined at intermediate time points by the

formula

B(t,k) = SP(2,m,k) + X (SP(3,m,k) + X (SP(4,m,k) +

X SP(O,m,k)))

where B(t,k) is the interpolated value of quaternion term k at time t,

X = t - SP(l,m,k) and m is selected such that,

X is positive or zero and t - SP(l,m,k+l) is negative.

The values of the time derivatives of q are estimated using the

derivative of the spline interpolating formula at each time point,



4(k) = SF(3,k,3) + X f'2.0SP(4, k,L) 3.0 X SP(5, k,L)

c (k) a 2.0 SP(4, k,L) + 6.0 X .SP(5,k,L)

The values of q, 4, and are then used in eqaations 23 and 24 to

calcuLate Lhe angular velocity and a,-celeration aL the specified time

points ;

V = 1, cu + ;7x'c;

in detai :

V(1) 2 c v(l) - e u(L) ( v2 u(3; - vk3) u(2) )

2 ( -(2) e v,",2 * v(3 u .) - v(1) u(3)

V,3) 2 c v(3) - C U(3 + v(l I (2 - v, 2  u( ) )

,Y = 2(q,- _ u * x iP

In aetail

M( ) = 2 c -$ i' - u(I ) + -, - , 3) u,'2))
A(2 =  2! c ( - t, u(2) , > (3 - v(3) u(3)

A(J) . c J, u ( 3, "f2) u(1)

The angular acceleratiou is saved and used to prescribe the vehicle

motion as ,t is for the other cases when Ihe angular velocity or

acceleratiun is inout.

5.2 CHANGES TO THE PROGRAM

The above calculations are done in subroutine, VINPUT. A new

subroutine, QUA7 has been added to calculate a quaternion from the yaw,

pitch, Pnd roll angles. Both VINPUT and QUAT are listed in Volume 3.

The changed line. in VINPUT are labelled with JTF984 in column 73.
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6.0 SLIP JOINT

The ATB Model insures that joints do not pull apart by imposing a

constraint force. A new feature that has been added to the model is

termed a "slip joint". The slip joint allows one segment of a

particular tree structure to move linearly along a prescribed axis with

respect to the adjoining segment.

6.1 a UATIONS

First, we look at the equaLicns for a two segment model.

The linear equations ot motion are:

ol xI '

(25)

subject to Lrt -: straint ,.ua ion:

+T r (26)

where

m',m 2  are the masseis osejment I and segment 2,

xK, T"2  ar e tfl.H iocatlois oi the centers ot gravity (inertial

,;' St e(l )

K 1,  x2  are the linear acctlerations (inertial system),

Fj, F2  are the locations of the joint connecting the two

segments (local systeri),



* 1
T ,  

d r t L he transpose t the I re tIOr. CoLi2e

aaLra ces,

U 1 , U2 2 are tv external t rces a CL, ng on he b egMEnts

Kin .Jrt'ai eyst~ai), and

:s Lhe constraint foie at the j int (inertial

sy stem)

For the standaro ;oia. I t 1 ,nr.t ar- f xe- 1n the local reference

systems obf ne res t .,;egen..,, ,.n. tnz oi nt does not ul.! apart.

fcr tw stjp int eqIat.r 26 1 rep aed by "he equation

SI + F " 2 2 2 327)

whers j o- i pkacement of th, -c it reiati ', to the fixed position l.

The vector 7 1 !c-nsraccc o L ialo') a vectcr fixed in segzment 1

Thus, ret tie d-sjtacumLt t Lht joi.t

'hk:- . is a E:ta ar ; aitia -1e to U' and

i ts a ; ' .r f i i i-, seg:ent .

A! is a, a . i s t L0 "l iccal joint

ret erenct> ) s ,Le-, In tgmen-t 1).

In order to solve the system equations, equation " :ust be doubly

differentiatcj to ObLin an eqoaLon for the accelerations. Performing

this ditterentiation produces a tcrv, involving the acceleration of the

scalar a. Since this is not known, it must be eliminaled. This is done

by eliminating the component of the differentiated equation 27 that is

parallel to the vector h resulting in a vector equation of rank 2. To

produce a complete set of equations an euation which states that the

'onstraint force, T, have no component along the free axis, h is added
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to the system equations. This process is similar to the process used

for joint constraints as described in Volume I of reference 4.

6.2 IMPLEMENTATION

To define a joint as a slip jcint the user is asked to provide

additional information on the first card of the two card set B.3.AI

B.3JI. On this card the user spfcifles:

JOINT(J) as before,

JS(J) as before,

JNT(J) a, before,

IPIN(J) as before plus these new options;

5 slip joint with complete angular freedom

(same as iPIN = 2 for angular motion),

= ip joint with pin as y-axis ot joint

1samne as JPIN - I for angular motion),

progran' ill use the flexural spring

c ha rac t e i st i cs),

Iip jcint with pin as z-axis of the joint in

stgxnent JNT(J),

(program wiil1 use the torsional spring

charact eri stI cs),

N(gatlvt numbers may be used to indicate that

the ]oint is initially locked, however, if a

uegative nuibr is used o indicate an

initially locked slip joint, ISLIP cannot be 0

(see ISLIP bt-low).

bR(I,2*J-1) as before,

SR(I,2*J) as before,

[ • ... . ... ... . ... . . ... . .. . . . .. .. . . .... .



ISLIP new parameter,

I oint is a slip ivt,

= standard -j: nt ,I U11 cxt.d Sli p loint

joint iS f slip joint which May be locked or

unlocked icr angular uotion (depending on +

o- - IPiN), but it ucked ic- linear motion.

CI new pice~i, a. gative number for the value of

u.wiuckicg Kr C':- tinsion,

new parameter, a Tositivt, nzLb.r lur the value of

If .2, ano C r.: hct zero the vcnt .7iil not unluck

The slip oLnts alcow nl J +3 c. nt .o o C C ttr vy - L'te. to move aong

the z-axis of the jN,.(J) oint Icord'caEn r ision is movement

al on6 t , -, si tv- s- -ts and -oT preE;3or L. P tie bt4 t-ve z-axi s

When the s ip joint i Liree to '-p p.Ying C n amper fo;-c(.s may be

introuucet'd on the bl ,Iaxi by using the sp ing o3per option in the

model. The spring dampcr LItion 1i specit 1 ;n the D 6 cads. The

coordinates ot the attaclmient points snoulo bu be tcted as the location

of the joint ir, the r .spect v ; lilt.

6.3 CHANGES TO PROGIRAM

The dimension of parameter SR in COMMON/DESCRF/ nas been changed to

St(4,60). For joint J the value of 'a' (see equatir 28 above) is

stored in SR(4.2*J~1) and the value o) the time derivative of 'a' is
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stored in SR (4,2*J). These values are initialized to zero by

Subroutine BINPUT and are computed by Subroutine CHAIN. The change was

made in all routines using this COMMON block.

A new matrix All has been added to COMMON/CMATRX/. The dimensions are

AII(3,3,30). Refer to section 4.7 of reference 4 to see how this matrix

is used in the system equations (the matrix BIi is the transpose of

All). Matrix All is computed in Subroutine SETUPI. This change to the

COMMON block was made in all routines which use this COMMON block.

Subroutine BINPUT was modified to input the parameters ISLIP, Cl, and C2

(see the above section on implementation). The value of ISLIP is stored

in the IEULER array and values of Cl and C2 are stored in the CONST

array. These arrays are in COMMON/CEULER/.

Subroutine CHAIN was modified to compute the value of 'a' and its

derivative for a slip joint. The values of SEGLP and SEGLV for segment

J+1 (joint J) are adjusted to insure that the slip is on the prescribed

axis (axis h equation 28 above).

The DAUX subroutines were modified to introduce the matrix All into the

system equations and account for values of IPIN of 5, 6, or 7.

Subroutines DHHPIN and DRIFT were modified to account for the new values

of IPIN.

Subroutine PDAUX was modified to allow for the integration of the linear

position and velocity of segment J+l if joint J is a slip joint and is

free to slide.

Subroutine ROTATE was modified to accommodate the slip joint.

Subroutines RSTART and SEARCH were updated to account for the change in

the dimension of SR and the new matrix All.
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Subroutine SETUPI was modified to compute the All matrix and the VI

array for the joints.

Subroutine SETUP2 was modified to account for the new values of IPIN.

Subroutine UPDATE was modified to unlock the linear motion of a slip

joint based on the parameters Cl ana C2 aeacriDed above.

Subroutine VISPR was modified to acjommcdate the new values of !PIN.
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7.0 HYPERELLIPSOID OPTION

In order to improve the modeling of corners and other geometries the
option to use hyperellipsoids as contact surfaces rather than standard
ellipsoids was added. This option was originally developed for General
Motors Corporation and has beei incorporated into the ATB model with

their permission.

A hyperellipsoid is defined as the surface generated by the functional:

F(T) = x/aim + ;y/blm + jz/cjm (29)

where is the vector from the center of the hyperellipsoid to

a point on the boundary,

x, y, z are the components of ,

a, b, c are the semi-axes' lengths, and

m is the power of the hyperellipsoid, an even integer.

As with an ellipsoic if

F( ) = I the point is on the hyperellipsoid surface, if
F(P)- I the point is an interior point, and if
F(I) > 1 the point is an exterior point.

If m = 2 the surface is an ellipsoid. For larger values of m the figure
"squares off" at the corners. As m approaches infinity the figure
approaches a rectangular parallelpiped with the same dimensions as the
hyperellipsoid. This makes the hyperellipsoid very useful for
describing contact surfaces.

To compare the hypprellipsoid shape to a parallel piped let x =ra, y =
rb, and z = rc in the functional, then the value for r for which this
point is on the hyperellipsoid surface is given in Table 2 for various

powers of m.
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x = a, y = b, and z - c is a vector to the corner uf tue parallel piped,

therefore r is the ratio between the cunmpunentb of the vector on the

hyperellipsoid surfare in the dircction - Llhi paralIel piped corner and

the components of the vector to Lhe cor-ier.

Note that for w = 128 the ellipsoid point is within 1% of the corner of

the rectangular parallelpiped.

TABLE 2

Corners oi a dyprellipsoid

2 0.5/i35

L). 75984

0. 67169

lb 0.93364

32 .96 2.

64 0. 9 629 q

"28 1. 5

256 0. 9572

512 .99785

.arge I - 1.0986/m

7.1 CONTACT WITH A PLANE

Subroutine PLELP computes the contact witi a pane and has been modified

to allow the uso of hyperellipsoids. if the surface is an ellipsoid

represented by the oid format the original method of calculating the

point of maximtum penetration is used. if the surface is a

hyperellipsoid the surface point whose normal is perpendicular to the

plane is the point of maximum penetration and can be found by taking the

gradient of the functional in equation 29;
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(x m /y A /_
')F - - - j +- k =- cT (30)

a b c

where A is a positive scalar and

Y is the outward normal to the plane.

The coordinates x, y and z of the point of maximum penetration are

readily obtained from equation 30 as functions of o.. ucan then be

computed by substituting these coordinates into equation 29. This

computation is done by the double precision function HYPEN. With the

value of , the point of maximum penetration, XH is computed and a scale

factor, FM, is determined. This scale factor times the vector W1{ will

produce the vector from the center of the hyperellipsoid to the plane.

If the surface is an ellipsoid, this vector will locate the ceuter of

the intersection ellipse in the plane. The quantity AMR = I-FMP is then

evaluated and if it is less than or equal to zero there is no contact of

the surface with the plane and no further computations are done.

If there is contact, the contact is checked to determine if it is within

the boundaries of the plane and the forces are applied as described in

Section 4 of this report and Vol 1 of Reference 4.

It should be noted that the roll-slide option can not be used with

hyperellipsoids.

7.2 CONTACT ANOTHER HYP'ERELLIPSOID

Modifications were made to subroutine SEGSEG to handle the contact of

two hyperellipsoids. Also two new subroutines HYEST and HYNTR were

written to replace subroutine INTERS to calculate the penetration

parameter and the point of force application.
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To determine if penetration exists and the point of force

applicaticn, three conditions must be met. First the point ol force

application must be the same in both segment coordinate systems:

I (F - d). (31)

Where

7 is the point in the first segment's principal coordinate

system,

4 i6 the point in the second segment's principal coordinate

sy stem,

is the vector between the centers of the two surfaces in the

first segment's principal coordinate system,

T is the transformation matrix from the first to the secona

segment's principal coordinate system.

The normal to each surface passing through this point must be parallel

and opposite in sign;

= -c. G( ) (32)

Where

F(P) is the functional of the first hyperellipsoid at point ,

G(5) is the functional of the second hyperellipsoid at point 6,

is the vector gradient, and

o is a positive scalar.

Finally, the point is chosen to be within each hyperellipsoid a distance

proportional to the hyperellipsoid size:

F(P) = G(q) (33)

If the value of F( ) (and G(q)) is less than I the figures intersect, if

the value is greater than I no intersection occurs and if the value is 1

the figures just touch at the point p.

54



In the original algorithm, since the figures are ellipsoids, equations

(29) and (30) may be combined to form a matrix equation which can be

solved for p as a function of the scalar c. A Newton-Raphson iterative

method is then used to determine the value of c that allows all three

equations to be satisfied (Subroutine INTERS).

in the hyperellipsoid case, equation 30 is no longer a matrix equation

and so a different approach was developed. To obtain a first

approximation the hyperellipsoids are treated as rectangular

parallelpiped 'boxes' whose half-widths are the same as the semi-axes of

the hyperellipsoids. Subroutine HYEST determines whether or not these

'boxes' intersect.

If the 'boxes' intersect, subroutine HYNTR is called to refine the

estimate.

7.3 NEW SUBROUTINES

A number of new subroutines were added to the ATB model in support of

the hyperellipsoid option. A description of each of these routines

follows. It should be noted that in several of these routines to obtain

approximations of desired quantities reference is made to a 'box'. This

'box' is the rectangular parallelpiped that is centered at the center of

a hyperellipsoid. The edges are parallel to the principal axes of the

hyperellipsoid and the half-widths are the same as the semi-axes of the

hyperellipsoid. For large values of the power (the exponent) the

hyperellipsoid almost 'fills' the box.

In order to store the variables required to define a hyperellipsoid the

BD array containing the ellipsoid parameter was reformatted. The

formats now used are listed in Table 3.
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TABLE 3

Format of BD Array

old format new format
Subscript ellipsoids orly hypvrelIipsoids

1 a -1 power of x
2 h a

3 b

,5 0(.) 0(l)
b 0J '13 ) 0(2)

7 DTE5(1,i) 0(3)
8 DT ED(2,1) D(li)
9 DTEV(3, 1 D(2,i)

10 TED,1 2 D(3 )

i2 v.E,)O z D(2,2)
i3 D IE h1 3) D3 ,2

15 DIED3 3 D(2,3)

16 mO; 1 I P3S17 D F.U:, i & /

17 18 ~DTFD03I, j,"b

19 -
20 ' U 2, i power of x
21 pcwer of y
22 Un p)cw-tr of z
23 2 T ,,2,3) i i tqual powers

24 D 11)(3,3 ,' .

where: 1, m, n art the pcwer: o rh , hypercl lip3oid,
a, L, c are the 6emi ax~- of the (hyper)ellipsoid,

it the offset of the ellipsoid frot. Lhe c.g. of tne segment,
D is the direction cosine defhning tL, orientation of the

(hyper)elliDsoid with respect t, the segment principal axes,

,QT D is the ellipsoid matrix, and

DTJQ ik the inverse of the el!ipsojd natrix.

7.3.i Subroutine HYABF B,_Z _,_A il

This routine cumputes the hyperellipscid tunctional, F, and it's

derivatives. It is called by subroutineb HYEST and HYNTR.

Inputs:

B BD array for hyperellipsoid containing m, a, b, c

Z array containing x, y, 7
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Equations:

F= (x/a)m + (y/b)m + (z/c)m

/y m-I/m

( F)/m = cm)-/bM

\z M-1/ cm/

The diagonal hyperellipsoid matrix is

(x/a)m - 2  0 0
0 (y/b)m - 2  0

0 0 (z/c)m-2

Out put s:

A 3x3 matrix containing the diagonal elements of the

hyperellipsoid matrix in the first column, the

components of F in the third column.

F the value of the functional

7.3.2 Subroutine HYBND(. ZlV. CU.C.X)

This routine computes a point on the polygon, determined from the

intersection of a plane with a box, that is furthest from an interior

point of the polygon in c specified direction. It is called by

subroutine PLEDG.

Inputs:

M number of points in array Z,

Z array determined by subroutine HYBOX,

IV pointer array determined by HYBOX,
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U vector direction or iaterest,
+I, use direction of U,

C L-I, usac -U direction,

Out put:

X point Jn box in direction f C*U

Equat ions:

The clistance of point - ir-, tLe origin in the direction

CU is given bO

Proc, odur-:

The poiits are a[XRi Je a i Lhe ene yiding the maximum d

is stored in K. it two 'int i giv the saLne distance X is

their average v u t : - l l

7.3-1oubi cut~n __YBi LP i:

This routine computes the intersecit;cr c a plane with the edges of

a rectangular box. It ic IcIed Ly sutrout lue LJDG .

Input s:

array containing a, b, c, the halt-widtha of the box.

T the vector iot-mal to the plane,

the coordinates of " point 0n the plane.
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Cutputs:

N the number of paired solutions,

IV pointers to on ordered set of solutions,

ZC the coordinates of the points of intersection.

Eqdations:

Let the origin of coordinates be ti" center of the box and let the

vectors E(i), i - 1, 2, 3, be parallel to the edges of the box and of

length equal to the respective half-widths.

Let Z be the vector

= u E() + v E(2) + w (3), where ", v, w are scalars.

is a point in the Dox if -i u, v, w "

It TTZ =Tp the point is in the plane.

Procedure:

The box has 6 surfaces, each of these is selected in turn and the

functional Tz - TTp is evaluate.d at the four corners of the surface.

It the functional changes sign between any adjacent corners the

plane intersects the edge of the box between these corners.

The intersection point is computed and stored in the array ZC.

For each surface, points are obtained in pairs, lines of

intersection of zero length are ignored. The maximum number of pairs

will be 12 and the minimum will be 6 if there is a true intersection of

the plane with the box.
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bIf at le-ast Ui pirt, were tuuvnu the Location in the array ZC of a

unique path iver the surface or ttie box is determined ao stored in the

array IV in such a tashion that the sequEnce

j = IV(k) , k i , 3, 3,.,N-i wUi determine the path going

through the points ZC(*,j).

7.3.4 -Subroutine -HYDADLD.,A,_ DA D

This ro-uti ne computes the miatrix DTAD where D is a direction cosine

matrix and A is a diagonal matrix,- it is called by subroutinie HYNTR.

Inputs:

L, 3x3 direction cfveink mintrix,

A airray centcining diagorai tl~mruts of A (see HYAB'

Output

LAD Lhe Jxid product .xitrix, Di.AD.

Procedure:

The computatio'n is ".stral n,,-Irwara matrix multiplication.

7.3.5 Subroutine H~~I~A

This routine is called by oubroutiie SEGSE, to make-t a preliminary

estimation of intersec-tion. of two hy erellipsoids if an e~timate does

not exist. It is called by subroutine SFCSEG.

Input:

8M, BN BD) arrays containing the data defining the

hyperellipsoids m and n,



The tollowing npt a.c -ir, COI*MV4N/TEHPVS/

R tht2 vectur from the center of hyperellipsoid m to the

center ot hyperellipsoid n'.

D2 the direction Cosine matrix which transforms for the

sepient reference of n to the segment reference of m.

Output:

'FAB array used db a neurmor , contains the same information

as the V array debcribec below if there is an

i nl Ler bc c t 10o H.

The 10i1oWIO Outpts a :e in CUMMON/TEM.PVS/

1 array cuntai.1r., the iollowing;

ivalue- ot rA~i),tio ct rlagnitudtes uf Yadients at

Lh, ,-xpansiun factor,



Equati ot.s:

Let Z be a vector Oxi m and U be a vector on n where

= U + R ;. is; an expansion factor,

F . , w.here F and G are the byperellipsoid

functionals for Z and U respectively,

Procedure:

The hypereilipsoids are treated as boxes arnd subroutine HYLPX is

called to tinu the largesiL value 01 2; and 7 that satisfy the

equation U . R.

It ne v lue or is lvss than there is no intersection and the

routine exits 6toring the .altt ot in the TAB array. The routine also

exits for a value of , equai to 1 since thero cau be no penetration.

if the val ue c - is greaLf.t Than I t re is aa intersection of the

boxes. In this case the points ;7 pno T Tre scaled to Lie on the

respectivt hyperell.ipso)ds, t'.te value t e. etimated and the value of

tor the :caled poirts it, est,:ated. The results are stored in the TAB

at ray.

7.3 .b Double Pre .si_ Ft.noticon .... 1'zAL2

This function is used Dy subroutines fYAB, HYLIM, and HIYVAL to

evaluate the term HYFCN = C( 7 IA)F u such a fashion as to prevent

underf lows. The value of A is always greater than zero and P is

non-negative.
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Equations:

If P = 0, HYFCN C and if Z = 0, HYFN = 0.

For P >0 and Z 0 0, the value of a parameter q is determined;

q = P(InjZ 1 - lA )

If q -88.5, HYFCN = 0. Otherwise HYFCN C exp(q)

Procedure:

The equations are evaluated as above. The value of -88.5 should be

adjusteo to represent the smallest value which will not produce an

underflow on the computer being used. (exp(-88.5) = 3.6*10(-39))

3.7 Subroutine HYLAU CWZBD)

This routine is used to calculate the boundaries of the figure

tormeO b the intersection of a hyperellipsoid and a plane, i.e., the

point r. the tigure whose abscissa is a minimum or a maximum. It is

called by subroutine PLEDG.

Input:

G vtctor detining horizontal axis (abscissa)

V vector defining vertical axis (ordinate)

k, -,kalar multiplier of 7

vector such that C4 is in the plane

estimate of desired point

BD array containing parameters of hyperellipsoid
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Output:

A scalar multiplier of U

B scalar multiplier ot V

Z d'sirvd point

Equations:

7 AT + BV -C ; origin is -encer ot hyperelilpsoic,

T TlxV ; vector cross ptouct, - vector perpendicular

to planie.

Uulst raints equations;

ZI L -' I ruuctional equation ot h perelips""d,

T EZ -) boandar) constraint, ncrzal perpendicular to

rai bate,

T2 C T',; must ie

Procedure :

A liz- L estimate, was OLtainlt br. :"aig this routine by E call

to HYBND. This estimate is trie vaiuc ol :i iitrv.

First order perturbation O quations tire used to reline the value of

Z. These equations are:

VTL = -VTki(m-i)

-T - C7 T- 7)r



where 5 is the perturbation of T and m is the power of the

hyperellipsoid.

The equations are solved for D and Z is updated as Z = Z + D.

The process is iterated until the perturbations are small when

b compared to Z.

When convergence is obtained the values of A and B are computed.

7.3.8 Subroutine HYLPR 1J_2._ID.CS.E.T)

This routine is a simplex method for solving a linear programming

problem. It is called by subroutine HYLPX.

Input.

il index of first column to search,

J2 index of last column to search,

ID pointer array to identify columns,

cost vector,

S constraint array,

E temporary storage for pivot column,

Output:

vector indicating final costs of each column,

S right hand column contains solutions obtained,

ID pointer to identify columnb.
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Equatlons:

S 16 a matrix whcse rows are the constraint eque-tions and

whose col mns are the coetticients of a particulaL

varidble in tre!se constraint equations. The last column

ot S is the constant term in the equations.

T(j) ITS'(,J) - '(k), JI, J2, k - ID(j)

where C 1s the cost ve,:tor of the current solution.

Procedure:

The simplex algorithm is us-' [he values ot T(J) are computed if

any T(j) is positive, variable 1is entt.zed into the solution, replacing

the variable whose elimination ,-ill redace the cost. Pointers to the

current solution variables are kept in the ITD array which is updated.

The process i.s iteratc , uzti a i 'P ) are non-pos:tive.

The JI = J2 the variabLe identified with column J1 is forced into

the solution anu no iteatLion is perfcimed.

7.3.2_ Subroutine SYIPXBMIBN)

This program is ,al led by subroutinc HIYEST to sulv, for the estimate

of the pcints ot intersccti c' ot Lwo !iyprell ipsoid s .

[nput:

BM,BN BD arrays containing the paratreters of hyperellipsoids

im and n.
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The following inputs are in COMMON/TEMPVS/

the vector from the center of m to the center of n.

the direction cosine matrix which transforms from the n's

reference system to m's reference system.

Output: (in COMMON/TEMPVS/)

V(i) an array containing the following;

i = 1, 2, 3 point on the box enclosing hypereliipsoid m,

1 = 4, 5, b point on the box enclosing hyperellipsoid n,

i = 7 the expanzion factor.

CGunst raint Lquations;:

Z V -. KR=u

Z(i) a(i), where a(i) are the semi-axes ot m, i = 1,3,

V( I  b(i), where b(i) are the semi-axes ot n, i = 1,3,

Procedure:

The array S repres~nting the cunstraint equations is computed. The

value of is assigned a cost of -1, the values of Z and V and their

associated slack vectors are assigned costs of 0. Subroutine HYLPR is

called Lo solve for the values ot f and V which produce the maximum

value of .

It after the initial call to HYLPR the associated cost vector

indicates that there Is more than one solution HYLPR is recalled to find

all solutions and the results are averaged.
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See the descriptions of subroutines HYEST and HYLPR for more

details.

7.3.10 Subroutine HYNTR(BMBN, TAB)

This subroutine is called by subroutine SEGSEG to deLermine the

points on intersecting hyperellipsoids that are used to determine the

penetration (if any) of these figures.

Inputs:

BM, BN BD arrays containing the parameters of the figures

m and n,

TAB array containing the current etimates of the

desired points,

The tollowing inputs are ji, COMMON/TEMPVS/

the vector from the center of figure in to the center

of figure n.

D12 the direction cosine matrix which transforms a vector

trom the segment reference svst-in associated with n

to that of m,

Output'

TAB(U) an array containing:

i = I the value of

i = 2 the value of

= .3, 4, 5 the value of Z, the point on m,
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i = 6, 7, 8 the value of V, the point on n.

This TAB array is offset such that i = I corresponds to a value of I

- 23 in the TAB array used by subroutine SEGSEG.

Equations:

= V + 'R; relation between points,

;F - i 'G, where F and G are the hyperellipsoid functionals

for the m and n hyperellipsoids respectively.

F = 1, G =

Let F = ZTAZ, G = VTBV, F AZ, VG = BV, and let dZ, dv, d

and d; be perturbations of , V, and i respectively. The linearized

perturbation equations are:

dZ- dV - d ., V+R

dA + tdV+ d " -AZ BV

7 T AdZ Y1 ~

Proc e dure :

The values sturt-a 11 the TAB array on entry are used as first

guesses to the variablt.s Z and V.

The perturbation equations are solved and the values updated. The

procedure is iterated until the perturbations of Z are small compared to

the value of Z.

When convergence is determined the TAB array is updated.
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7.3.11 Subroutine HYREA

This subroutine is called by subroutine PLEDG to compute an

approximate area and ceutroid fur the figure formed by the intersection

ot a nyperelipsoid and a plane.

All input, and output- are in COMMONiTEMPVS/.

Input :

AMI, AM2, AFM, AFP, AX!, AX2, coordinates of the boundaries of

BMI, BM2, B1M, BFP, BXI, BX2, the i igure

ANLN, AMAX, RMIN, BMAX

Output:

AREA proportional to the area, the true area is this number

times the magnitude of the cross product of the vectors

used to Jetine the absciss& and the ordinate of the

ceordlnate syst(M used IF! PLELX,

AB th lucation of thv ,entrol,, in the abscissa coordinate,

Bh it, oattoi. u the centroid n the ordinate coordinate,

Eq kii t ions :

Consider the area below the straight iae segrient for the point

(xl,yl) to tht point (x2,v2). Then

dx = x2 - xl

ar = dx(y2 + yl), twice the increment of area,

ax = ar(x2 + xl) + dx(x2y2 + xlyl), six times the increment

of the abscissa of the centroid,
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ay = ar(y2 + yl) - dxy2yl, six Limes the increment of the

ordinate of the centroid,

AREA = sum ot the ar divided by two,

AB = sum of the ax divided by six times the area,

BB = sum oi the ay divided by six times the area,

Procedure:

The sections ot the general shape are shown in Figure 9.

'ests are madt tor the existence of the sections and the formulae are

ust'd to compute the area and the centroid.

A ..?I, 1., ) o--~ S A-T, BMAX)
(. (AX I, BMAX)

/

/

1," 1 , i BA!, IAX)' / (BX2,mi:(BA2,IBMAX))

\ /

/

B " I't (ITI, BM IN)

tFi , r I i i, id *coilw\!fT Ai ,i Bou i r ics
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7.-3 .12 -Sub rout ie - HYUL_ AN. NP

This routine is a iiodirleu Gauss Eliminstiun process tor solving a

s et or ,imuitant.CUS equatiunc. .1t is caliej by subroutine HYNTR.

Input

A array containing Lte ',1T1UltaneUL1S cUtiOnF.

N th( number of e(;uot ions,

NL, t he 1,1r bt tu b s ti ( tiV5 A.

Out ~ut

A the redu-ced sclv.Ad ts,( iet i i,, . 'ihe 1'c"!li u rs ,,rt in CCAL1111

N-' t ie cir 1ay

Yroc(durt -

-aus E ri i na t io rii CE, - w iL thtT civ ot alIway _ C n t hE, d ia gona

N o pivt e iT i: du n ec Cr a 2zk Lc, Oi a .al . ' 1 icodii icat ion wa,

niecessar. DtL:Um h ' i uyi _IUll wt

c or r Ps kuk, iid n, a I z t rc. r ow

7.-3.13- S u bro utLin e H YVAA U K,

Tii i r 0LeL 1in c m uu r, the pi nt L,: ha 0. ~cr 1 oeu I t t at 1 1r- ueUn a

particular Lin(,. It is _alltd b-Y -uhroiitiie P!,LDG.

Input

Uve-ctor def ining line ot i nterest,

Rvector locating end point of line,



BD array containing hyperellipsoid parameters,

L = I indicates point along -U desired,

= 2 indicates point along +U desired,

Output:

A parameter dttining point on U.

Equat Ions:

L - AU + R, polt on tine U,

7TbZ 1, constraint that point ties on hyperellipsoid,

(lypureliipsoid tunctional)

Pt tUl bation 0(eii C-ltOls:

Let i(A.' z ZTBZ - 1, and klt t- be a perturbation o( A. Expand up

to the second d.thrvative with respect to A to gct

k(A+e ) = t A) + el' + U,,2 ,

U, Is the tlr t derivative ot t, and t" is the secona at A),

S-t(A)l[ '12 + si n(t') t /2)2 - f(A)f"/2]1 / 2 ]

Procedure:

Sbroutite, )IYVBx . ,  ailled to dt±termine the poit on the box

surrounding the hyptrellipsoid in tw direction specified by L.

The quadratit perturbation equations are solveu and the process

iterated until the tunctional t:quation satisfies a prescribed test.



7.3. I4 Subrotutie HYVB X . BUtM_

This rcut,,,e is called by subroutire HYVAL to determine the points

ot intt-r section ot a vector with a to×,

Input :

vector whi .h utn'rsec s Dox,

S I ixd vector from ,1entt z olb to

a rr t, 60i : n(l I-r , 0 UOX ,

Out put

I nd(-x dntI v tu solU t lCnb, M - Ir ther ei a n

I I 11, k ., t ,, C t I o io .

Zt i a p o i1 n1 t o n zi r a . tI t 1 , :.3 , (o r D ! .' : , n nt t G f m7 a u s e q u a

the dima is ron ot Lli. o ,-

b, Lra t'> f. I,,, iL 4t'sc~~ Wi tIc eXI ,.

,. I\ * I, ,~c o bio

Z ao * S- tt b i cct r r espo nt hobp box,

1(1) Q4( 1/ an St ) b0. tI corrspondLn', rompo nt, t c t th

VO~totS ,, an ld S r,.sloctlvely.



the point t~ter-c = oy : S(i2 )/Q(i.) will be a desirei

polint. Tkie i nez~Ua IL,. ttLLd for all combiniations of the indices and

L t Unli-Ile SeILlUicim tot r are saved In the array RM. Before exiting

t he RM' s art urcorenk sut. that "M(Il) LS tne smallest algebraic solution

aluo RM, 2) jS 'U i!orget.

7 -.3 .1 -'. u -ncLt1 r H Y 11EN ( bD. F, V/

-111 S I llL [t- oi I 0 .)y 'ub)1CuLti IIIC "LL ' to couli Itt- the value u1

IA il .>c ip 't: 1 te .O- p Ut at Il n o I ch eIDtt interQetI on IIU * a

v 1 Sr ipc I % ~It i vt -F (. w~ne t,0 ro s -sf thIne hy p ere lipSoid

UsI, tX 1

- ~ilps1 c li~u jri t lonl,

I t lt tl [' r( 11 ) C l'



Attb o ,Lo M~ ai 1d;fIJI penet rati on tile giadLi ent mu st be par allel- to

he- p Ian e VLL Or t It, tj t 3  1

ALP t

Al, l' v



The vmlue of F(ALP) is computed. If JF(ALP) i is less than 10 - the

functional is assumed to be satisfied and the routine exits. If the

SF(ALP) is greater or equal to 10 - 8 a stepping procedure is used tu

modify ALP until convergence is obtained. Note: if the exponents are

all equal, the first -stimate of ALP should satisfy the convergence

Lest.
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8.0 OTHER NEW OPTIONS

A number of minor moditications and corrections have been made to the

ATBIII model. These changes have a label other than the subroutine name

in column 73 of the program listing in Volume 3. Most of these changes

have been to correct errors in the code, to add stops to avoid input

errors or to improve the output format. Those changes that allow the

user to choose a new option are described briefly below, A more

complete description of the use of these options is in the input

description in Volume 2.

Three new time histories have been added. The H.8 cards allow the wind

trces on any segment to be output, the total torces and torques at a

julnt can be output using the H.9 cards, and body properties of a single

segmet or a bet of segments can now be output using the H.10 cards.

These bouy properties include the center ot mass location, total linear

and angular momenton. and kinetic energy. The H.I cards now allow the

aLCeleration output to include the etfects ot gravity. This allows the

accelerations to bc compared exactly with accelerometer date. Ail,( tLt

user now alds tne opt iu, to ctioose the reterence system in which many ot

t.ic, Lic w str U, arc output, ny specifying KREF in the H cards.
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